Real-Life Emotion Representation and Detection in Call Centers Data

نویسندگان

  • Laurence Vidrascu
  • Laurence Devillers
چکیده

Since the early studies of human behavior, emotions have attracted the interest of researchers in Neuroscience and Psychology. Recently, it has been a growing field of research in computer science. We are exploring how to represent and automatically detect a subject's emotional state. In contrast with most previous studies conducted on artificial data, this paper addresses some of the challenges faced when studying real-life non-basic emotions. Real-life spoken dialogs from call-center services have revealed the presence of many blended emotions. A soft emotion vector is used to represent emotion mixtures. This representation enables to obtain a much more reliable annotation and to select the part of the corpus without conflictual blended emotions for training models. A correct detection rate of about 80% is obtained between Negative and Neutral emotions and between Fear and Neutral emotions using paralinguistic cues on a corpus of 20 hours of recording.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emotion Detection in Task-oriented Spoken Dialogs

Detecting emotions in the context of automated call center services can be helpful for following the evolution of the human-computer dialogs, enabling dynamic modification of the dialog strategies and influencing the final outcome. The emotion detection work reported here is a part of larger study aiming to model user behavior in real interactions. We make use of a corpus of real agent-client s...

متن کامل

Real-life emotions detectio paralinguistic cues on Human-H

The emotion detection work reported here is part of a larger study aiming to model user behavior in real interactions. We already studied emotions in a real-life corpus with human-human dialogs on a financial task. We now make use of another corpus of real agent-caller spoken dialogs from a medical emergency call center in which emotion manifestations are much more complex, and extreme emotions...

متن کامل

Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition

The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a spee...

متن کامل

Real-life emotion-related states detection in call centers: a cross-corpora study

In this article, we describe experiments on the detection of three emotional states (Anger, Positive and Neutral) for two French corpora collected in call centers in different contexts (service complaints and medical emergency). These corpora have a high level of privacy. In order to be comparable with results obtained in the community we used the openEAR acoustic features extraction platform i...

متن کامل

Emotion detection in task-oriented spoken dialogues

Detecting emotions in the context of automated call center services can be helpful for following the evolution of the human-computer dialogs, enabling dynamic modification of the dialog strategies and influencing the final outcome. The emotion detection work reported here is a part of larger study aiming to model user behavior in real interactions. We make use of a corpus of real agent-client s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005